
Journal of Global Optimization 27: 293–311, 2003.
© 2003 Kluwer Academic Publishers. Printed in the Netherlands.

293

Single Machine Scheduling of Unit-time Jobs with
Controllable Release Dates

T.C. EDWIN CHENG1� and NATALIA V. SHAKHLEVICH2��

1Department of Management, The Hong Kong Polytechnic University, Hung Hom, Kowloon,
Hong Kong (E-mail: mscheng@polyu.edu.hk).
2National Academy of Sciences of Belarus, Surganov Street 6, 220012 Minsk, Belarus
(E-mail: shah@newman.bas-net.by)

Abstract. The paper presents a bicriterion approach to solve the single-machine scheduling problem
in which the job release dates can be compressed while incurring additional costs. The two criteria
are the makespan and the compression cost. For the case of equal job processing times, an O(n4)

algorithm is developed to construct integer Pareto optimal points. We discuss how the algorithm
developed can be modified to construct an ε-approximation of noninteger Pareto optimal points. The
complexity status of the problem with total weighted completion time criterion is also established.

Key words: Scheduling, deterministic, single machine, controllable release dates, multiple criteria

1. Introduction

We study a single-machine scheduling problem in which the jobs are ready for
processing at their release dates, which can be varied within certain limits, with
a view to constructing an optimal makespan schedule. In processing systems with
controllable release dates, a lower and an upper bound of the release date are given
for each job. The controllable release date is said to be “compressible” if the actual
release date is modeled as a function of the amount of compression from its upper
bound. Compressing the release dates may decrease the completion times of the
jobs but incurs additional costs. The objective is to minimize the makespan of the
schedule as well as the compression cost.

Scheduling problems with controllable release dates commonly arise in manu-
facturing systems where the preprocessing of the jobs depends on a common re-
source such as fuel, catalyzer, raw materials, etc. Real-life examples of such prob-
lems are given in Janiak (1986, 1991, 1998) in the context of steel production which
involves preheating of iron ingots (see Williams (1986)).

� This research was partially supported by The Hong Kong Polytechnic University under grant
number PolyU 5245/99H.

�� Supported in part by INTAS (Project INTAS-96-0820).

294 T.C.E. CHENG AND N.V. SHAKHLEVICH

The scheduling problem can be formulated as follows. A set of jobs N =
{1, . . . , n} is to be processed on a single machine. The processing times pi of the
jobs are equal and, without loss of generality, we assume pi = 1, i = 1, . . . , n.
For every job i, i ∈ N, its normal (latest) release date ri is given, which is the
instant at which job i is ready for processing. Each normal release date ri can
be compressed by some amount xi to the value ri = ri − xi at a cost bixi . A
lower bound ri is also given for the compressed release date ri , i.e., ri � ri � ri .
For the sake of simplicity we normalize the data in such a way that we have unit
processing times pi = 1 but rational lower and upper bounds of the release dates
r, ri , i = 1, . . . , n. A schedule can be specified by the start times of the jobs Ti , or
equivalently by the completion times of the jobs Ci, i = 1, . . . , n. The objective
is to minimize the makespan of the schedule

C = Cmax = max
i∈N

{Ci},
together with the compression cost

K =
n∑

i=1

bixi.

We will consider the bicriterion problem P1 and two single-criterion problems
P2 and P3, where one of the criteria is treated as a constraint. Using the three-field
notation scheme introduced in Graham et al. (1979), we denote

– P1 by 1|pi = 1, ri − xi |Cmax,
∑

bixi ,
– P2 by 1|pi = 1, ri − xi,Cmax � C|∑ bixi (C is a given constant),
– P3 by 1|pi = 1, ri − xi,

∑
bixi � K|Cmax (K is a given constant).

We will indicate when necessary whether a restriction on integer lower and upper
bounds of the release dates ri, ri and compression amounts xi is imposed.

Since the general case of the problem with arbitrary job processing times is
strongly NP-hard (see Janiak (1991), Nowicki and Zdrzalka (1990)), the past re-
search has been focused on constructing approximation algorithms for the general
problem and exact algorithms for some special cases. Approximation algorithms
are presented in Janiak (1991, 1998). The special cases investigated deal with
equal upper bounds on the release dates (ri = r, i = 1, . . . , n), arbitrary pro-
cessing times, and common or proportionate compression cost functions (Cheng
and Janiak (1994), Janiak (1986, 1991, 1998), Li (1994, 1995)). For these special
cases, the efficient frontier for the bicriterion problem P1 can be constructed in
O(n2) time (Cheng and Janiak (1994)), while problems P2 and P3 are solvable in
O(n log n) time (Cheng and Janiak (1994); Li (1994)).

To the best of our knowledge, all results known for the problem with arbitrary
(unequal) ri are related to NP-hardness proofs (see Janiak (1991, 1998); Nowicki
and Zdrzalka (1990)). In this paper, we extend the research on the problem with

SINGLE MACHINE SCHEDULING OF UNIT-TIME JOBS 295

arbitrary ri by presenting a number of polynomial time algorithms for the special
case with equal job processing times. The importance of unit-time problems in mul-
ticriteria scheduling has been stressed in Chen and Bulfin (1990). This special case
“approximates” the situation when job processing times differ by relatively small
amounts. While job processing times are equal, their release dates and compression
costs may be different: the jobs can be released by different suppliers which may
have individual capacities and individual opportunities to speed up their processes.

The bicriterion problem P1 is the main subject of the present study. For this
problem, we develop an O(n4) algorithm that constructs Pareto optimal schedules
with integer compression amounts xi and integer lower and upper bounds of the
release dates ri, ri, i = 1, . . . , n (see Section 2). Problems P1, P2, and P3 with
noninteger ri, ri and xi are investigated in Sections 3-5. In Section 3, we solve
problem P1 with noninteger compression amounts by presenting an O(n4�B/ε�)
algorithm to construct an ε-approximation of Pareto schedules, where ε is a given
accuracy and B = ∑n

i=1 bi . In Section 4 we develop an O(n3) algorithm for
problem P2 and in Section 5 we develop two algorithms for problem P3 for in-
teger and noninteger parameters with complexities O(n3 log n) and O(n3(log n+
log B/ε)), respectively. The special cases of P1, P2 and P3 with equal compression
costs of the jobs bi = b, i = 1, . . . , n, are considered in Section 6. The complex-
ity of the problem with the total weighted completion time criterion

∑
wiCi is

discussed in Section 7. Finally, some conclusions are presented in Section 8.

2. Problem P1 with integer ri, ri and xi

In this section, we show that the bicriterion problem 1|pi = 1, r i −xi |Cmax,
∑

bixi

with integer upper and lower bounds of the release dates ri, ri and integer com-
pression amounts xi is solvable in O(n4) time by presenting an algorithm which
determines all Pareto optimal points.

DEFINITION 1. A schedule s is Pareto optimal with respect to the functions
(C,K) = (Cmax,

∑
bixi) if there does not exist another schedule s′ with C(s′) �

C(s), K(s′) � K(s), and at least one of these two inequalities is strict.

The Pareto optimal set P for the problem under consideration is a set of points in
the (C,K)-space with makespan values from the set {C,C + 1, . . . , C}, where
C (C) is the makespan value which corresponds to the optimal solution of the
problem 1|pi = 1, ri|Cmax (1|pi = 1, r i|Cmax, respectively). Since C � rmax + n,
C � rmax + 1, where rmax = maxi∈N {ri}, rmax = maxi∈N{ri}, the number of
Pareto optimal points is pseudopolynomial: it is at least equal to (rmax + 1) −
(rmax + n) and this bound is tight. In fact, there is no need to enumerate explicitely
all integer Pareto optimal points. We will show that some of these points belong
to linear segments in the (C,K)-space which can be specified by their endpoints.
The number of the endpoints is O(n) and each adjacent breakpoint can be obtained

296 T.C.E. CHENG AND N.V. SHAKHLEVICH

from the previous one in O(n3) time, ensuring the time complexity O(n4) of our
approach.

We will denote by (C0,K0) the Pareto optimal point with makespan C0 = C

and compression cost K0 = 0, and by (Cg = Kg) the Pareto optimal point with
makespan Cg = C0 − g and compression cost Kg > 0, g = 1, 2, . . . , C − C.

2.1. THE FIRST n PARETO OPTIMAL POINTS

At first we recall that the optimal schedule for the single-machine problem with
given release dates of the jobs can be obtained by sequencing jobs in nondecreasing
order of the release dates. Hence, it is easy to construct an initial Pareto optimal
point (C0,K0) = (C, 0) with uncompressed release dates ri of the jobs as the
solution of the problem 1|pi = 1, ri|Cmax. The initial schedule s0 may consist of
several blocks with the jobs in each block being processed contiguously. The next
Pareto optimal point (C1,K1) with C1 = C0 − 1 can be constructed by means
of compressing the release dates of the jobs from the last block by the optimal
compression amounts x∗

1 , . . . , x∗
n , which minimize the compression cost function

K = ∑n
i=1 bixi . Proceeding with the next Pareto optimal point (Cg,Kg), g � 2,

a similar problem can be solved each time until there is no possibility of further
shifting the last block due to the restrictions on the minimum release dates of the
jobs ri .

To simplify our discussion, we first consider the case when the initial schedule
s0 consists of a single block of n jobs which is processed in the time interval
[T 0,C0], T 0 = C0−n. Then each next Pareto optimal schedule sg also consists of
a single block. Otherwise the jobs from the first block can be started later without
increasing the value of Cg, but decreasing the compression cost Kg.

We describe how a Pareto optimal schedule sg, 0 � g � n−1, which is optimal
for the problem 1|pi = 1, ri − xi,Cmax � C0 − g|∑ bixi and consists of a single
block can be modified to obtain the next schedule sg+1, which is optimal for 1|pi =
1, ri −xi,Cmax � C0−(g+1)|∑ bixi . In what follows, we denote the start time of
schedule sg by T g , its completion time by Cg,Cg = T g+n. The jobs are processed
within unit length time-slots of the form [τi, τi + 1], i = 1, . . . , n. We will refer to
such time-slots as to τi .

To transform schedule sg into sg+1, we construct a network with vertices V =
{v0, v1, . . . , vn} and arcs A = {(vi, vj)|1 � i � n, 0 � j � n − 1}. Vertices
V correspond to time-slots T g − 1, T g, . . . ,Cg − 1, and we denote a time-slot
corresponding to vertex vi by τi . Each arc (vi, vh) represents the optimal transfer
of the job which is processed in schedule sg in time-slot τi (say, job j) to a time-
slot τh corresponding to vertex vh. The length of arc (vi, vh) is determined by the
compression/decompression cost for this transfer and is given by the formula:

ϕ(vi, vh) =
{

bj (min{rj , τi} − min{rj , τh}), if rj � τh,

∞, otherwise.
(1)

SINGLE MACHINE SCHEDULING OF UNIT-TIME JOBS 297

It is easy to see that any path from vn to v0 determines a chain of job transfers
which leads to a schedule processed in [T g+1,Cg+1] = [T g − 1,Cg − 1], and the
length of this path is equal to the change in compression cost function.

THEOREM 1. Given a Pareto optimal schedule sg consisting of a single block
and the corresponding network (V ,A), the shortest path from vn to v0 determines
the transformation of sg into the next Pareto optimum schedule sg+1.

Proof. Let job j ∈ N in schedule sg be processed in time-slot τi corresponding
to vertex vi of network (V ,A). Since there exist arcs from vi to all vertices except
for vn, then network (V ,A) specifies all feasible transfers of job j to unit time-slots
from [T g+1,Cg+1]. An arbitrary path from vn to v0 specifies such job transfers that
in the resulting schedule all jobs are processed in different unit time-slots from
[T g+1,Cg+1]. Alternatively, for any schedule σ g+1 processed in [T g+1,Cg+1], there
exists a path in (V ,A) which determines the transformation of the current schedule
sg into σ g+1 and the length of this path determines the cost of this transformation
K(σ g+1) − K(sg). Since schedule sg is Pareto optimal, there does not exist a
cycle of negative length in network (V ,A). It is clear that if K(sg+1) − K(sg) �
K(σ g+1) − K(sg) for any schedule σ g+1 processed in [T g+1,Cg+1], then sg+1 is
a Pareto optimal schedule and it determines a Pareto optimal point (Cg+1,Kg+1)

in the (C,K)-space. �
Observe that if the shortest path from vertex vn to v0 is equal to infinity, then due
to (1), there does not exist any feasible compression of the release dates which
decreases Cmax.

Based on Theorem 1, we can formulate an algorithm to construct the first n

Pareto optimal points. The subsequent points will be constructed by a specialized
faster algorithms described later.

ALGORITHM “First Points”
Input: Pareto optimal schedule s0 with jobs from N processed contiguously in

[T 0,C0] in nondecreasing order of their uncompressed release dates ri

Output: a set of Pareto optimal schedules sg, g = 1, . . . , n, and corresponding
points (Cg,Kg) in the (C,K)-space

1. K0 := 0
2. DO g = 0 TO n − 1
3. For schedule sg , construct network (V ,A) with n + 1 vertices and n2 arcs.

Calculate the arcs’ weights by (1)
4. Find the shortest path from vn to v0

5. IF the length of this path λ is equal to ∞, THEN Stop
6. ELSE construct schedule sg+1 by modifying sg in accordance with the

solution of the shortest path problem. Set Cg+1 := Cg−1, Kg+1 := Kg+λ
END

The correctness of algorithm “First Points” follows from Theorem 1. The time
complexity of Step 3 is O(n2) since there are n2 arcs and the complexity of cal-

298 T.C.E. CHENG AND N.V. SHAKHLEVICH

culating the length of an arc is O(1). The shortest path problem can be solved in
O(n3) time for the network with negative arc lengths and in presence cycles of
nonnegative length (see Ahuja et al. (1993)), and hence the next Pareto optimal
schedule sg+1 and corresponding point (Cg+1,Kg+1) can be obtained in O(n3)

time.
Algorithm “First Points” terminates under one of the following conditions:

• either in Step 5, λ = K(sg) − K(sg+1) = ∞, i.e., the release dates of some
jobs are compressed to their minimum values and the makespan of schedule
sg cannot be reduced,

• or the schedule sn is obtained with all release dates compressed and this
schedule corresponds to the Pareto optimal point (Cn,Kn), Cn = C0 − n.

Since the number of Pareto optimal points constructed by algorithm “First
Points” is not larger than n, its overall time complexity is O(n4).

2.2. INTERMEDIATE AND LAST PARETO OPTIMAL POINTS

In this section, we consider the remaining Pareto optimal points after the first n

points have been constructed. The remaining points are split into two groups: inter-
mediate and last points. The last points, (Cg,Kg), g ∈ {C−C−m+1, . . . , C−C},
correspond to the Pareto optimal schedules in which at least one job starts at its
minimum release date. The number of the last Pareto optimal points m � n. Indeed,
if in schedule sl job i starts at its minimum release date ri , then C l � ri + n, and
there does not exist a schedule sl+n with C l+n � ri . Intermediate points (Cg,Kg),
g ∈ {n + 1, . . . , C −C −m}, correspond to the Pareto optimal schedules in which
all jobs have compressed release dates and there is no job starting at its minimum
release date.

Due to Theorem 1, the algorithm based on solving the shortest path problem
can be applied to obtain not only the first n Pareto optimal points, but for all
intermediate and last points. This can be made in O(n3(C − C)) time. As we
will show, the last points can be constructed by a faster O(n2) algorithm and the
intermediate Pareto optimal points belong to a linear segment in the (C,K)-space,
which can be specified by its two endpoints.

First we characterize the structure of intermediate Pareto optimal schedules.

THEOREM 2. If in schedule sg, g � n, there is no job j starting at its minimum
release date ri , then all jobs are sequenced in nondecreasing order of bi .

Proof. First we observe that in schedule sg, g � n, all jobs have compressed re-
lease dates and their starting times are less than mini=1,... ,n{ri}. Suppose
Theorem 2 does not hold and in schedule sg there is a pair of jobs i, j processed in
two consecutive time slots τ , τ + 1, respectively, such that bi > bj . Then sg is not

SINGLE MACHINE SCHEDULING OF UNIT-TIME JOBS 299

Pareto optimal schedule: interchanging jobs i and j does not violate the minimum
release dates ri , rj and changes the compression cost K by bj − bi < 0. �
It follows from Theorem 2 that in schedule sn all jobs are sequenced in nondecreas-
ing order of bi . If in schedule sg, g � n, there is no job starting at its minimum
release date ri , then the job order in the next schedule sg+1 is the same as in sg ,
i.e., sg+1 is obtained from sg by shifting the whole schedule one unit earlier without
changing job order. It means that the Pareto optimal points (Cg,Kg), g > n, are
obtained by shifting schedule sn until at least one release date is compressed to
its minimum value. Let sl , l > n, be such a shifted schedule. Then all Pareto
optimal points with C ∈ {C l,C l + 1, . . . ,Cn} belong to a linear segment in
the (C,K)-space, which connects point (C l,K l) and point (Cn,Kn). Hence to
specify intermediate Pareto optimal points (Cg,Kg), it suffices to specify the
endpoints (Cn,Kn) and (C l,K l). It is clear that (C l,K l) belongs to the subset
of the last points, l = C −C −m+ 1, and that the time complexity of constructing
(C l,K l) is O(n).

Now we describe how the last Pareto optimal points (C l+1, K l+1), . . . , (C l+m,

K l+m),m � n, can be obtained in O(n2) time. This algorithm first determines the
minimum makespan value C and then constructs points (C l+1,K l+1), . . . , (C l+m,

K l+m), C l+m = C, in a straightforward way.

ALGORITHM “Last Points”
Input: Pareto optimal schedule sl with jobs from N processed contiguously

in [T l,C l] and at least one job i starting at its minimum release date
ri ; corresponding Pareto optimal point (C l,K l) in the (C,K)-space

Output: a set of Pareto optimal schedules sg, g = l + 1, . . . , l + m, m � n,
and points (Cg,Kg) in the (C,K)-space

1. Number the jobs in nondecreasing order of bi (this order corresponds to the job
sequence in schedule sl)

2. Determine the minimum makespan value C by constructing auxiliary schedule
s with minimum release dates ri . The jobs in s are sequenced in nondecreasing
order of ri

3. g := l, Kg+1 := Kg

4. WHILE Cg > C DO
5. τ := T g − 1 (the first free time-slot)
6. FOR i = 1 TO n

7. Consider a job processed in time-slot τi (say, job j)
IF rj � τ , THEN move job j from time-slot τi to time-slot τ and set
Kg+1 := Kg+1 + bj (min{τi, rj } − τ), τ := τi

END FOR
8. Cg+1 := Cg − 1, T g+1 := T g − 1, g := g + 1, Kg+1 := Kg

END WHILE

The working of the above algorithm is illustrated in Fig. 1.

300 T.C.E. CHENG AND N.V. SHAKHLEVICH

Figure 1. The working of Algorithm “Last Points”.

The correctness of algorithm “Last Points” follows from the fact that given
Pareto optimal schedule sg , it determines the next schedule sg+1 in full accordance
with the algorithm based on solving the shortest path problem (see algorithm “First
Points”). The complexity of constructing schedule s is O(n log n), while each
schedule sg+1 is constructed from sg , g = l, . . . , l +m−1, in O(n) time. Steps 4–
8 are repeated no more than n times. So the overall complexity of constructing the
last Pareto optimal points is O(n2). It is less than the complexity of constructing
the first n Pareto optimal points as the algorithm deals with compressed jobs, which
are sequenced in nondecreasing order of compression costs.

We have shown that if the first schedule s0 consists of a single block of jobs, then
constructing the first n Pareto optimal points takes O(n4) time, and constructing
the last m � n Pareto optimal points takes O(n2) time, while the intermediate
Pareto optimal points belong to a linear segment. The overall complexity can be
estimated as O(n4). We proceed now with the general case.

2.3. GENERAL CASE WITH INITIAL SCHEDULE s0 CONSISTING OF SEVERAL

BLOCKS

Suppose now that the initial schedule s0 consists of several blocks of jobs. To con-
struct the Pareto optimal point (Cg+1,Kg+1) from point (Cg,Kg) which consists
of several blocks of jobs, we consider the last block only and apply one of the
following approaches.

SINGLE MACHINE SCHEDULING OF UNIT-TIME JOBS 301

Figure 2. Pareto optimal schedules for Example 1.

Figure 3. Pareto optimal points for Example 1.

i) If there are jobs in the last block with uncompressed release dates, then we
use algorithm “First Points” . Note that network (V ,A) should be constructed
for the jobs from the last block.

ii) If all jobs in the last block have compressed release dates and no one job starts
at its minimum release date, then we shift the last block to the previous one or
until the release date of at least one job is compressed to its minimum value
ri .

iii) If there is a job in the last block which starts at its minimum release date ri ,
then we apply algorithm “Last Points” to the last block.

302 T.C.E. CHENG AND N.V. SHAKHLEVICH

Since the shortest path problem is solved no more than n times, shifting the last
block is done also no more than n times, and algorithm “Last Points” is used only
once, the total complexity of constructing all Pareto optimal points is O(n4).

2.4. EXAMPLES

We illustrate the approach described by the following example of the problem
1|pi = 1, ri − xi |Cmax,

∑
bixi .

EXAMPLE 1. Construct integer Pareto optimal schedules and corresponding
Pareto optimal points in the (C,K)-space for the problem with three jobs. The
lower and upper bounds of the release dates and compression costs are given by
the table:

i 1 2 3

ri 8 7 6

ri 2 1 0

bi 0.5 1 3

The initial schedule s0 consists of a single block processed in time interval
[6, 9]. This schedule, together with subsequent Pareto optimal schedules s1, . . . , s6,
are given in Fig. 2. The corresponding Pareto optimal points are presented in Fig. 3.
The first three schedules s0, s1, s2 with Cmax ∈ {7, 8, 9} are obtained by solving
three shortest path problems, the next two schedules s3, s4 with Cmax ∈ {5, 6} are
obtained by shifting the whole block of jobs without changing their order (1, 2, 3)

until the starting time of job 1 becomes equal to r1 = 2. The last two schedules
s5, s6 with Cmax ∈ {3, 4} are obtained by algorithm “Last Points” .

If the problem is not restricted to finding Pareto optimal schedules with in-
teger compression amounts, then efficient schedules with noninteger starting times
should be considered and the problem becomes much more complicated. The fol-
lowing example demonstrates that the job sequence of noninteger Pareto optimal
schedule can differ from the job sequences of the two nearest integer Pareto optimal
schedules.

EXAMPLE 2. Construct integer and noninteger Pareto optimal points for the prob-
lem with three jobs. The lower and upper bounds of the release dates and compres-
sion costs are given by the table:

i 1 2 3

ri 1 2 3

ri 0 0 0

bi 1.8 10 1

SINGLE MACHINE SCHEDULING OF UNIT-TIME JOBS 303

This problem can be solved by enumerating different job sequences. The set of
Pareto optimal points is given in Fig. 4 by a bold piecewise linear curve. The Pareto
optimal schedule with Cmax = 3.8 has the job sequence (1, 3, 2) while the nearest
integer points with Cmax = 3 and Cmax = 4 have job sequences (3, 1, 2) and
(1, 2, 3), respectively.

In the next two sections, we investigate problems P1, P2, and P3 with arbitrary
compression amounts starting first with problems P2 and P3 and using the results
obtained to solve problem P1.

3. Problem P1 with arbitrary ri, ri and xi

In this section, we consider problem P1 with arbitrary compression amounts and
describe how an ε-approximation (ε-kernel) of the set of Pareto optimal points P
can be generated.

DEFINITION 2. For an arbitrary ε > 0, a set Pε is called an ε-approximation of
P if for each (C,K) ∈ P there exists (Cε,Kε) such that Cε � C +ε, Kε � K +ε.

Consider first the problem under an assumption that the schedule s0 consists of a
single block. If (Cg,Kg) and (Cg+1,Kg+1) are two consecutive integer Pareto op-
timal points constructed by the approach described in Section 2, then Cg −Cg+1 =
1 and Kg+1 − Kg � B, where B = ∑n

i=1 bi .
To construct ε-approximation of P , we split each unit-line interval [Cg,Cg+1]

into subintervals of length ε/B such that for two consecutive points C ′ and C ′′, we
have C ′−C ′′ = ε/B and K ′′−K ′ � ε. We choose ε � ε/B such that 1/ε is integer
and construct Pareto optimal points with makespan values C ∈ ⋃1/ε−1

k=0

⋃G
g=1{C −

kε − g}, where G = C − C − 1.
If k = 0, i.e., C ∈ {C,C − 1, . . . , C − g, . . . , C + 1}, then we start with

schedule s0 with incompressed release dates and with makespan C and apply the
O(n4) approach from Section 2.

If k = 0, i.e., C ∈ {C − kε, C − kε − 1, . . . , C − kε − g, . . . , C − kε + 1},
then we start with auxiliary schedule with makespan C = C +1−kε which can be
obtained by shifting schedule s0 by 1 − kε time units later. Then each next Pareto
optimal schedule for C = C − kε − (g + 1) can be constructed from the previous
one with C = C − kε − g in O(n3) time by solving the shortest path problem
as in algorithm “First Points”. To construct the “last points”, we again can solve
no more than n shortest path problems. Thus, the time complexity of constructing
optimal schedules C ∈ {C − kε, . . . , C − kε + 1} is O(n4). Since k takes 1/ε

different values, overall time complexity of constructing Pε for problem P1 can be
estimated as O(n4�B/ε�).

If initial schedule s0 consists of several blocks each block starting at its earliest
time, then for fixed value k, k = 0, . . . , 1/ε1, we modify s0 by starting each its
block later at the nearest time h−kε, where h is integer. Then the distance between

304 T.C.E. CHENG AND N.V. SHAKHLEVICH

Figure 4. Pareto optimal points for Example 2.

two consecutive blocks is integer and the algorithm from Section 2.5 can be applied
without increasing the total complexity O(n4�B/ε�).

4. Problems P2 with arbitrary ri, ri and xi

First we consider problem P2 with restricted makespan and with arbitrary (integer
or noninteger) compression amounts xi , i.e., 1|pi = 1, ri − xi,Cmax � C| ∑

bixi .
Since function K is monotone, an optimal schedule for problem P2 completes
exactly at C and starts at T = C − n, and problem P2 can be formulated as an
assignment problem:

minimize
s.t.

n∑
i=1

n∑
j=1

wij zij ,

n∑
j=1

zij = 1, i = 1, . . . , n,

n∑
i=1

zij � 1, j = 1, . . . , n,

zij ∈ {0, 1}, i = 1, . . . , n, j = 1, . . . , n,

(2)

where wij is the cost of assigning job i to time-slot [T + j − 1, T + j]:

wij =
{

bi max{ri − (T + j − 1), 0}, if T + j − 1 � ri,∞, otherwise.

It follows that problem P2 can be solved in O(n3) time for any C, integer or
noninteger.

SINGLE MACHINE SCHEDULING OF UNIT-TIME JOBS 305

5. Problem P3 with ri, ri and xi

First we develop an algorithm to problem P3 with integer ri, ri and xi under an
assumption that the initial schedule s0 consists of a single block. As we have shown
in Section 2, the algorithm can be easily modified if the initial schedule s0 consists
of several blocks without increasing its time complexity. Then we will present an
approach to solve problem P3 with arbitrary ri, ri and xi .

ALGORITHM “Schedule with
∑

bixi � K ′′
Input: Constant K

Output: An optimal schedule s∗ for problem P3
1. Apply algorithm from the previous section to solve problem P2 with C =

C −n and C = C +n. Construct schedules sn and sl with integer compression
amounts and Cmax(s

n) = C − n, Cmax(s
l) = C + n, determine Kn and K l .

2. IF Kn � K � K l , then determine makespan C∗ of the optimal schedule
s∗ by finding the point (C∗,K∗) in the segment with endpoints (Cn,Kn) and
(C l,K l).
Construct s∗ by the algorithm from the previous section with C = C∗.

3. ELSE apply binary search over n first integer points or over n last integer
points to construct schedules s∗, with maximum value K∗ satisfying K � K.

The correctness of algorithm “Schedule with
∑

bixi � K” follows from the
properties of the Pareto optimal set for problem P1 with integer compression
amounts. Steps 1–2 use the algorithm from the previous section to solve problem
P2 and their time complexity is O(n3). In Step 3, binary search checks O(log n)

K-values each of which is obtained by solving problem P2 on O(n3) time, i.e.,
total complexity of this step and of the whole algorithm is O(n3 log n).

To solve problem P3 with arbitrary ri, ri and xi we first find integer solution
C∗,K∗ as described above. IF Kn � K � K l then C∗,K∗ is an intermediate
point in the segment with endpoints Cn,Kn and C l,K l , and the corresponding
C-value can be determined as

C = C l + (Cn − C l)
K l − K

K l − Kn
.

Otherwise since function K decreases monotonely in [C∗ − 1, C∗] and the maxi-
mum decrease is equal to B = ∑n

i=1 bi , an optimal value of Cmax can be found by
a binary search procedure in that interval. If ε is a given error bound, then interval
[C∗ − 1, C∗] can be split into B/ε equal parts such that for two consecutive points
C ′ and C ′′, C ′ − C ′′ = ε/B, and the change in the K-value K ′′ − K ′ is not larger
than ε. It means that the binary search procedure checks O(log B/ε) values of K,
each of which is obtained by solving problem P2 in O(n3) time, i.e., problem P3
can be solved in O(n3(log n + log B/ε)) time.

306 T.C.E. CHENG AND N.V. SHAKHLEVICH

6. Unit Compression Costs

In this section, we discuss how the algorithms developed in the previous sections
can be simplified for the problem with equal compression costs (bi = b, i =
1, . . . , n).

6.1. PROBLEM P1

In the bicriterion problem, we may assume without loss of generality that the
compression costs are equal to 1, i.e., to consider the problem 1|pi = 1, r i −
xi|Cmax,

∑
xi .

THEOREM 3. If sg is a Pareto optimal schedule and there are two jobs i and j ,
ri < rj , processed in time-slots τ1, τ2, such that max{ri, rj } � τ1 < τ2, then job i

is processed in τ1 and job j is processed in τ2.
Proof. Suppose in schedule sg job i is processed in time-slot τ2 and job j is

processed in time-slot τ1. Then interchanging jobs i and j leads to a modified
schedule s̃g such that

K(s̃g)−K(sg)=
{

(min{ri, τ2}−τ1)−(min{rj , τ2}−τ1) < 0, if rj > τ1,

0, otherwise, i.e., if ri <rj �τ1.

�
If in the initial schedule s0 all jobs are processed contiguously in one block, then
the algorithm constructing the first n Pareto optimal points is similar to steps 5–8
of algorithm “Last Points” . It is easy to check that the correctness of this approach
follows from Theorem 3. Since there are no more than n first points and each of
them is obtained in O(n) time, all first points can be constructed in O(n2) time
and this is also the time complexity of constructing the last points. Thus the overall
complexity of solving problem P1 with integer compression amounts is O(n2).

Theorem 3 holds for arbitrary (not necessarily integer) starting times. It means
that if T g, T g+1 are starting times of two Pareto optimal schedules sg and sg+1 with
integer starting times, then any schedule with noninteger starting time T , T g+1 <

T < T g, has either the same job sequence as sg , or the same as sg+1. In this
case the efficient frontier for all schedules with starting times from [T g+1, T g] is
a segment with endpoints (Cg,Kg), (Cg+1,Kg+1) if the job sequences in sg and
sg+1 are the same, or it consists of two line segments, otherwise: the slope of the
line segments starting in (Cg,Kg) is given by the total number of the jobs whose
release dates are being compressed while shifting schedule sg earlier, and the slope
of the line segments starting in (Cg+1,Kg+1) is given by the total number of jobs
whose release dates are being decompressed while shifting schedule sg+1 later.

The arguments from the previous section justify that the complexity bound
O(n2) holds for the more general cases when the initial schedule s0 consists of
several blocks,

SINGLE MACHINE SCHEDULING OF UNIT-TIME JOBS 307

6.2. PROBLEMS P2 AND P3

First we consider the problem with makespan as a constraint: 1|pi = 1, ri −
xi,Cmax � C|∑ xi . It is easy to check that Theorem 3 holds for problem P2,
and the the algorithm can be formulated as follows.

ALGORITHM “Schedule with Cmax � C”
Input: Constant C

Output: An optimal schedule for problem P2
1. Number the jobs such that r1 � · · · � rn.
2. FOR i = 1 TO n

3. Assign job i to the first available time-slot τ which satisfies: τ � ri, τ ∈
[C − n,C − 1]
END FOR

The complexity of algorithm “Schedule with Cmax � C” is O(n log n).

To solve the inverse problem P3, 1|pi = 1, ri − xi,
∑

xi � K|Cmax, with
compression cost as a constraint, we again can avoid constructing the whole set of
Pareto optimal points. It can be done in O(n log n) time by modifying Algorithm
“Schedule with

∑
bixi � K” from Section 5. Steps 1–2 of the modified algorithm

use the O(n log n) algorithm “Schedule with
∑

max � C” to solve problem P2 with
C = C + n and C = C + n. Step 3 constructs two integer schedules sg, sg+1 such
that K(sg) � K � K(sg+1) using binary search over n first integer points or over
n last integer points. As optimal schedule s∗ is obtained by left shifting schedule
sg or by right shifting schedule sg+1. Since problem P2 is solved O(log n) times in
the binary search procedure, the complexity of Step 3 is O(n(log n)2), and this is
the overall complexity to solve problem P3.

7. Minsum Criteria

In this section, we prove that problem P3 with the total weighted completion time
criterion is NP -hard in the ordinary sense.

THEOREM 4. The problem 1|pi = 1, ri − xi,
∑

bixi � K|∑ wiCi is NP -hard
in the ordinary sense.

Proof. We construct a reduction from the PARTITION problem which is known
to be NP -complete: given z different positive integers e1, . . . , ez and E = (1/2)∑z

i=1 ei , do there exist two disjoint subsets A1 and A2 such that
∑

i∈A1
ei = ∑

i∈A2

ei = E? The reduction is based on the following instance of the problem 1|pi =
1, ri − xi,

∑
bixi � K|∑ wiCi with n = 2z jobs. The release dates of the first

z jobs are incompressible and they are given by ri = ri = iE, i = 1, . . . , z.
The release dates of the next z jobs can be compressed and they are given by
rz+i = iE + 1, rz+i = iE − 1, i = 1, . . . , z. Job weights and compression
costs are determined as bi = ei, wi = ei , bz+i = ei, wz+i = ei , i = 1, . . . , z.

308 T.C.E. CHENG AND N.V. SHAKHLEVICH

Figure 5. Fragment of a schedule with a) incompressed or b) compressed release dates.

We show that there exists a schedule s∗ with

n∑
i=1

wiCi � D − 2E,

n∑
i=1

bixi � 2E

(3)

if and only if the PARTITION problem has a solution. Here D is a constant given
by D = ∑z

i=1 ei(2iE + 3).
First we analyze a schedule with the minimum total weighted completion time

if all release dates are uncompressed. In such a schedule, all jobs start at their
maximum release dates (see Fig. 5,a). We have:

∑n
i=1 wiCi = D,

∑n
i=1 bixi = 0.

Suppose first that schedule s∗ satisfying (3) exists. Then the release dates of
some jobs from {z + 1, . . . , 2z} have to be compressed (otherwise we have a
schedule with uncompressed release dates and

∑n
i=1 wiCi = D violating (3)).

If job i ∈ {z + 1, . . . , 2z} has compressed release date, then its compression
amount can be represented in a form xi = 1 + δi , where 0 < δi � 1 because
smaller compression amount xi � 1 does not decrease

∑
wiCi , but increases∑

bixi . A fragment of such a schedule with release date of job z + 2 compressed
by xz+2 = 1 + δz+2 is presented in Fig. 5(b).

Let the set of jobs with compressed release dates in schedule s∗ be I . First we
show that δi = 1, i ∈ I . Indeed,

n∑
i=1

wiCi = D − 2
∑
i∈I

eiδi ,

n∑
i=1

bixi = ∑
i∈I

ei(1 + δi).

Since schedule s∗ satisfies conditions (3),

−2
∑
i∈I

eiδi � −2E,∑
i∈I

ei(1 + δi) � 2E.
(4)

SINGLE MACHINE SCHEDULING OF UNIT-TIME JOBS 309

Summing the last two inequalities, we obtain:
∑
i∈I

ei(1−δi) � 0, which implies that

δi = 1, i ∈ I . Substituting δi = 1 in (4), we obtain:

− ∑
i∈I

ei � −E,∑
i∈I

ei � E.

It means that I forms a solution to the PARTITION problem.
Suppose now that sets A1 and A2 form a solution to the PARTITION problem.

Then for i ∈ A1, we compress the release dates of the jobs z + i by 2 and construct
schedule s∗ with

n∑
i=1

wiCi = D − 2
∑
i∈Ai

ei = D − 2E,

n∑
i=1

bixi = 2
∑
i∈Ai

ei = 2E,

This completes the proof of Theorem 4. �
It follows from the proof of Theorem 4 that problems P1 and P3 with total

weighted completion time criterion are also NP-hard.

8. Conclusions

In this paper, we have investigated the single-machine scheduling problem with
unit-time operations and controllable release dates which is a special case of the
strongly NP -hard problem with arbitrary processing times. The results obtained
are summarized in Table 1. In this table, the special case with integer compres-
sion amounts is denoted by [xi] and the general case with arbitrary compression
amounts is denoted by xi .

Problem P1 can be solved in O(n4) time if compression amounts are integer
or in O(n4�B/ε�) time if compression amounts are arbitrary. Problem P2 can be
solved in O(n3) time in case of integer or arbitrary compression amounts. Problem
P3 can be solved in O(n log n) and O(n3(log n + log B/ε)) time in case of integer
or arbitrary compression amounts, respectively. If the compression costs are equal,
then the time complexity of solving problem P1 reduces to O(n2) and to O(n log n)

for problems P2 and P3.
Observe that the algorithm developed for problem P1 with arbitrary compres-

sion is not polynomial. In fact other known ε-approximation algorithms for bicri-
terion scheduling jobs with controllable processing times pi − yi, 0 � yi � y, i =
1, . . . , n have similar nonpolymonial complexities:

310 T.C.E. CHENG AND N.V. SHAKHLEVICH

Table 1. The complexity of the unit-time problems with controllable release dates

Cmax,
∑

xi Cmax,
∑

bixi

∑
Ci,

∑
xi

[xi] xi [xi] xi

Bicriterion problem P1 O(n2) O(n2) O(n4) O(n4�B/ε) NP-hard

Single criterion problem P2 O(n log n) O(n log n) O(n3) O(n3) NP-hard

with Cmax as constraint

Single criterion problem P3 O(n log n) O(n(log n)2) O(n3 O(n3(log n+ NP-hard

with K as constraint log n) log B/ε))

• Tuzilov (1984) suggested an O(n2G/ε) algorithm to solve problem 1|pi −yi |
fmax,

∑
biyi , where fmax(y1, . . . , yn) = maxi=1,... ,n fi(Ci, y1, . . . , yn), fi is

an arbitrary nondecreasing function depending on completion time of job
i and compression amounts yi, . . . , yn, and G = fmax(0, . . . , 0) − fmax

(y1, . . . , yn);
• Nowicki and Zdrzalka (1985) developed O(n log n + �H/ε�nm) algorithm

to solve the bicriterion problem Q|Pmtn, pi − yi |Cmax,
∑

biyi of preemp-
tive scheduling n jobs by m uniform machines, where H = C − C, C is
makespan of the optimal schedule with incompressed processing times pi and
C is makespan of the optimal schedule with fully compressed processed times
pi − yi, i = 1, . . . , n.

Problems P1, P2, and P3 with the total weighted completion time criterion∑
wiCi are NP -hard. An interesting direction for future research is investigating

the problems with the minsum criterion with either equal job weights wi = w, i =
1, . . . , n, or equal compression costs bi = b, i = 1, . . . , n.

Acknowledgements

The authors are grateful to the anonymous referees whose comments have contrib-
uted to improving the paper.

References

1. Ahuja, R.K., Magnanti, T.L. and Orlin J.B. (1993), Network Flows: Theory, Algorithms, and
Applications, Prentice-Hall, New Jersey.

2. Chen, C.L. and Bulfin, R.L. (1990), Scheduling Unit Processing Time Jobs on a Single Machine
with Multiple Criteria, Computers and Operations Research 17, 1–7.

3. Cheng, T.C.E. and Janiak, A. (1994), Resource Optimal Control in Single Machine Scheduling
with a Completion Time Constraint, IEEE Transactions on Automatic Control 39, 1243–1246.

SINGLE MACHINE SCHEDULING OF UNIT-TIME JOBS 311

4. Graham, R.L., Lawler, E.L., Lenstra J.K. and Rinnooy Kan, A.H.G. (1979), Optimization and
Approximation in Deterministic Sequencing and Scheduling: a Survey, Annals of Discrete
Mathematics 5, 287–326.

5. Horn, W.A. (1974), Some Simple Scheduling Algorithms, Naval Research Logistics Quarterly
21, 177–185.

6. Janiak, A. (1986), Time-Optimal Control in a Single Machine Problem with Resource
Constraints, Automatica 22, 745–747.

7. Janiak, A. (1991), Single Machine Scheduling Problem with a Common Deadline and Resource
Dependent Release Dates, European Journal of Operational Research 53, 317–325.

8. Janiak, A. (1998), Single Machine Sequencing with Linear Models of Release Dates, Naval
Research Logistics 45, 99–113.

9. Li, C.L. (1994), Scheduling with Resource-Dependent Release Dates – a Comparison of Two
Different Resource Consumption Functions, Naval Research Logistics 41, 807–819.

10. Li, C.L. (1995), Scheduling to Minimize Resource Consumption with a Constraint on the Sum
of Completion Times, European Journal of Operational Research 80, 381–388.

11. Nowicki, E. and Zdrzalka, S. (1990), A Survey of Results for Sequencing Problems with
Controllable Processing Times, Discrete Applied Mathematics 26, 271–287.

12. Nowicki, E. and Zdrzalka, S. (1995), A Bicriterion Approach to Preemptive Scheduling of
Parallel Machines with Controllable Job Processing Times, Discrete Applied Mathematics 63,
237–256.

13. Tuzikov, A.V. (1984), On Two-Criterion Scheduling Problem with Controllable Processing
Times, USSR Computational Mathematics and Mathematical Physics 24, 191-194.

14. Williams, T.J. (1986), Analysis and Design of Hierarchical Control Systems: with Special
Reference of Steel Plant Operations, North-Holland, Amsterdam.

